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We examine the coexistence of the vortex state and the Fulde–Ferrell–Larkin–Ovchinnikov �FFLO� state in
quasi-two-dimensional type-II superconductors and the transition from this mixed state to the pure FFLO state
when the Maki parameter � increases. The pure FFLO state, which is characterized by Cooper pairs having
finite center-of-mass momenta q�0, occurs in the two-dimensional limit when the magnetic field is parallel to
the conducting plane. The vectors q are determined from the Fermi-surface structure and pairing anisotropy,
and become finite below a temperature T�. In quasi-two-dimensions, because of the orbital pair-breaking effect,
a mixed state characterized by �n ,q�� occurs, where n and q� denote the Landau-level index of the vortex state
and the wave number of the additional FFLO modulation along the magnetic field. We obtain the � dependence
of the upper critical field by numerical calculations. The upper critical field exhibits a cascade curve in the H-T
phase diagram. It is analytically shown that n diverges in the two-dimensional limit �→� below T�. In this
limit, the upper critical-field equation for the mixed state reduces to that for the FFLO state. A relation between
n of the mixed state and q� of the pure FFLO state is obtained, where q� denotes the component of q
perpendicular to the magnetic field. It is found that the pure FFLO state is nothing but the vortex state with
infinitely large n as is known in two-dimensional superconductors in a tilted magnetic field. The vortex state
with large n can be regarded as the FFLO state with nonzero q� in three dimensions.
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I. INTRODUCTION

In type-II superconductors, an applied magnetic field de-
stroys the superconductivity by two kinds of pair-breaking
effects: the orbital magnetic and Pauli paramagnetic pair-
breaking effects.1 We can define the pure orbital limit Hc20
and the Pauli paramagnetic limit HP, which are theoretically
obtained by taking into account only the orbital effect and
paramagnetic effect, respectively. The Maki parameter �
��2Hc20 /HP expresses the strength ratio of the two pair-
breaking effects.

In conventional metal superconductors, the orbital pair-
breaking effect dominates the system �Hc20�HP� because of
the large Fermi velocity. Partial destruction of the supercon-
ductivity due to the orbital effect creates vortexes, which
form a lattice below the upper critical field and causes the
order parameter to become inhomogeneous.

In contrast, in purely Pauli limited superconductors, an-
other type of nonuniform superconductivity has been pro-
posed by Fulde and Ferrell2 and Larkin and Ovchinnikov.3 In
magnetic fields, the Fermi surfaces of the up- and down-spin
electrons are displaced due to the Zeeman energy. If the up-
and down-spin electrons on the displaced Fermi surfaces
form Cooper pairs, they will have a finite center-of-mass
momentum. The superconducting state of such Cooper pairs
is called the Fulde–Ferrell–Larkin–Ovchinnikov �FFLO�
state. It is easily verified that a finite center-of-mass momen-
tum results in spatial modulations and nodes of the order
parameter in real space. As a result, spin-polarization energy
is gained by the depaired electrons near the nodes while con-
densation energy is lost.

Therefore, a necessary condition for the occurrence of the
FFLO state is that the superconductivity survives in high
fields such that �eH��0, for which the loss of condensation

energy due to modulation of the order parameter is compen-
sated by a gain in polarization energy. Here, �e and �0 de-
note the electron magnetic moment and the zero-field energy
gap of the superconductivity. This condition can be ex-
pressed as Hc2�HP, where Hc2 denotes the upper critical
field because HP��0. Therefore, the orbital pair-breaking
effect needs to be very weak for the FFLO state to occur.

This is one reason why the FFLO state has not been ob-
served in conventional metal superconductors. Gruenberg
and Gunther found that the FFLO state occurs in isotopic
superconductors only when the Maki parameter � is large
���1.8�.4 Such a large Maki parameter is usually difficult to
realize in alloy type-II superconductors, although it is
achievable in some exotic superconductors, such as organic
superconductors,5 heavy fermion superconductors,6 and ox-
ide superconductors because of their narrow electron bands,
large effective masses, and quasi-two-dimensionality.

Because of the orbital pair-breaking effect and the forma-
tion of the vortex lattice state, the dependence of the order
parameter on the spatial coordinates perpendicular to the
magnetic field is described by a superposition of Abrikosov
functions. Therefore, there may be additional modulations
due to the FFLO state only in the direction parallel to the
magnetic field, as Gruenberg and Gunther have proposed.4

We examined the coexistence of the vortex states with higher
Landau-level indexes n and the FFLO state in d-wave super-
conductors in a previous paper. We obtained phase diagrams
when the Pauli paramagnetic effect is negligible and also
when both the orbital and Pauli paramagnetic effects are
taken into account.7 We demonstrated that higher Landau-
level states and mixed states are stabilized in some cases.
Buzdin and Brison also demonstrated that higher Landau-
level solutions occur in isotropic systems when ��9.8 Re-
cently, Adachi and Ikeda have examined a mixed state in a
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model of a quasi-two-dimensional heavy fermion supercon-
ductor CeCoIn5.9

Bulaevskii examined film superconductors at T=0 in
tilted magnetic fields and found that cascade transitions oc-
cur between states with different n’s when the direction of
the magnetic field changes.10 It was shown that the upper
critical field tends to approach that of the FFLO state when
the magnetic field approaches the parallel direction. Buzdin
and Brison also obtained cascade transitions at finite tem-
peratures in two- and three-dimensional isotropic
superconductors.8,11 We extended Bulaevskii’s theory to fi-
nite temperatures in s- and d-wave superconductors.12 We
also reproduced the cascade transitions by solving the gap
equation and clarified the behavior in the limit of a parallel
field. We analytically demonstrated that the Landau-level in-
dex n of the vortex state diverges in the temperatures region
where the FFLO state occurs in the limit. As a result, the
envelope of the cascade transition lines approaches the
FFLO critical field when the field orientation approaches the
parallel direction. The vortex state is continuously reduced to
the pure FFLO state. We obtained a relation between n and
the FFLO vector q that connects the vortex states and the
FFLO state in the limit. The present study extends our pre-
vious theory to the mixed state in three dimensions.

Near critical fields, the order parameter of the pure FFLO
state can be expressed by a linear combination of exponential
functions exp�iqm ·r�, where qm are degenerate FFLO wave
vectors with optimum values determined from the structures
of the Fermi surfaces, the pairing interactions, and the tem-
perature. The free energies of such states were compared in a
three-dimensional isotropic system by Larkin and
Ovchinnikov,3 Matsuo et al.,13 Bowers and Rajagopal,14 and
Mora and Combescot,15 and in two-dimensional systems by
us16 and Mora and Combescot.17 Larkin and Ovchinnikov3

showed that the state expressed by ��r��cos�q ·r� has a
lower free energy than the state ��r��exp�iq ·r� proposed
by Fulde and Ferrell. We have shown that the square, trian-
gular, and hexagonal states have lower free energies than the
state ��r��cos�q ·r� at low temperatures in two
dimensions.16 Mora and Combescot have shown that states
described by many cosine functions have lower free energies
than the state ��r��cos�q ·r� in three dimensions when the
first-order phase transition is taken into account.15 The pos-
sibility of a first-order transition was also addressed by
Larkin and Ovchinnikov.3

When the magnetic field is not oriented in the optimum
direction of q of the pure FFLO state or when more than two
qm’s contribute to the linear combination for the pure FFLO
state, it may appear that the mixed state is not reduced to the
pure FFLO state in the limit �→� because in the mixed
state q can have a nonzero component only in the direction
of the magnetic field. In actuality, however, the Landau-level
index n of the mixed state diverges and the components of q
perpendicular to the magnetic field are realized.18 This be-
havior is analogous to that two-dimensional systems in a
tilted magnetic field. In the present paper, we demonstrate
this behavior in quasi-two-dimensional systems by an ana-
lytical proof and specific numerical calculations.

For simplicity, we adopt an effective-mass model assum-
ing that the first-order transition is suppressed to demonstrate

the continuity between the mixed state and the pure FFLO
state. In actuality, in the effective-mass model with very
large �, the first-order transition will occur at a slightly
higher field than the second-order transition.15 In this case,
the second-order transition curve below the first-order tran-
sition curve is regarded as that of the metastable transition,
which can be realized when the system is supercooled.

Recently, we have obtained a result that also suggests that
the Landau-level index n increases with � in an anisotropic
Ginzburg-Landau model near the tricritical point.19 Compar-
ing the phase diagrams with and without the orbital effect,
we have found that areas of the mixed states with n�0 in the
former phase diagrams correspond to areas of the pure FFLO
state with q��0 in the latter phase diagrams.

In Sec. II, we present our formulation. In Secs. III and IV,
we examine the pure FFLO state and the mixed state, respec-
tively. In Sec. IV, we show the transition from the pure FFLO
state to the mixed state and the limit as �→�. In Sec. V, we
show the numerical results for finite temperatures. In Sec.
VI, we summarize and discuss the results.

II. FORMULATION

We examine a model described by the Hamiltonian

H = H0 + Hm + H� �1�

with

H0 = 	
�	

 d3r
	

†�r�
1

2m�
�− i�

�

�x�

−
e

c
A��2


	�r� , �2�

Hm = 	
	

 d3r	h
	

†�r�
	�r� , �3�

H� =
 d3r
 d3r�
↑
†�r�
↑�r�V�r − r��
↓

†�r��
↓�r�� . �4�

Here, we have defined the effective masses m1=mx, m2=my,
m3=mz, Zeeman field h=�eH, and vector potential A,
where �e and H denote the magnitude of the electron mag-
netic moment and the magnetic field H=rot A. We consider
pairing interactions of the form

V�p,p�� = g����p̂����p̂�� , �5�

where the suffix � expresses a symmetry.
In the effective-mass model of Eq. �2�, it is convenient to

define r̃= �x̃1 , x̃2 , x̃3� by a scale transformation

�m�x� � �m̃x̃� �6�

with m̃= �mxmymz�1/3. Then, Eq. �2� is written as

H0 = 	
�	

 d3r
	

†�r�
1

2m̃
�− i�

�

� x̃�

−
e

c
Ã��2


	�r� , �7�

where we have defined
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Ã� �� m̃

m�

A�. �8�

We also define p̃= �p̃1 , p̃2 , p̃3� with p̃�= �m̃ /m��1/2p� so that
r ·p= r̃ · p̃. Then, the Fermi surface in p̃ space becomes spheri-
cally symmetric, and we can define a constant Fermi mo-
mentum p̃F and Fermi velocity ṽF= ṽFp̃ / p̃ with a constant
magnitude ṽF= p̃F / m̃, for the scaled momentum p̃.

Now, we derive the gap equation. The calculation is a
straightforward extension of previous studies.7,12,20,21 Near
the second-order phase transition, the gap function has the
form

��r,p� = ���r����p� �9�

and the gap equation is linearized as

− log� T

Tc
�0�����r� = T


0

�

dt
1

sinh�Tt�
 d�p̃�

4
����p̂���2

� �1 − cos�t�h −
1

2
ṽF� · �̃������r� ,

�10�

where vF� = ṽFp̃� / p̃� and �̃= ��̃1 ,�̃2 ,�̃3� with

�̃� = − i�
�

� x̃�

−
2e

c
Ã�. �11�

The upper critical field Hc2 is the highest H among those
that give a nontrivial solution of ��r�. We note that Eq. �10�
is the same as that of a system with a spherically symmetric
Fermi surface except that the argument p̂�=p� / p� of ���p̂��
is different from the integral variable p̂̃�= p̃� / p̃�= p̃� / p̃F.
Therefore, when ���p̂�� is constant, it can easily be verified
that the mass anisotropy does not affect the upper critical-
field equation except that the vector potential is scaled as
described in Eq. �8� since p̂̃� is only an integral variable. In
contrast, for anisotropic superconductors, the mass aniso-
tropy affects the upper critical-field equation through the de-
formation of ���p̂�� when it is expressed in p̃ space.21

III. PURE FFLO STATE

In this section, we briefly review the case in which the
orbital pair-breaking effect is negligible. In this case, we can
set A=0 in Eqs. �2� and �11�. Equation �10� has a solution of
the form

��r� � exp�iq̃ · r̃/�� �12�

and is reduced to

− log� T

Tc
�0�� = T


0

�

dt
1

sinh�Tt�

�
 d�p̃�

4
����p̂���2

��1 − cos�t�h −
1

2
ṽF� · q̃��� . �13�

For example, for s-wave pairing, �s�p�=1, there is an infinite
degeneracy with respect to the direction of q̃, although the
magnitude q̃ is uniquely determined so that the critical field
is maximized. For non-s-wave pairing, both the direction and
the magnitude of q̃ are optimized. Depending on the symme-
tries of ���p� and the Fermi surface, and the temperature,
there may be 2,4 ,8 ,16,¯-fold degeneracies with respect to
the direction of q̃. We write the optimum q̃’s as q̃m with m
=1,2 , ¯ ,M. Below and near the upper critical field, the
order parameter is expressed by a linear combination,

��r� = 	
m

�meiq̃m·r̃. �14�

Among the states of this form, the physical state is that with
the lowest free energy. Every degenerate q̃m does not neces-
sarily appear in the linear combination of the physical state.
The most well-known form is that expressed by the linear
combination of eiq̃·r̃ and e−iq̃·r̃, i.e., ��r��cos�q̃ · r̃�. For the
second-order transition and s-wave pairing, this state is the
physical state in the effective-mass model.

Here, we note that q̃m are not necessarily parallel to the
magnetic field when the orbital effect is negligible. The num-
ber and directions of the optimum q̃m that contribute to the
physical state depend on the structures of the Fermi surface
and the pairing interactions,22,23 and the temperature.12,24–26

In the present effective-mass model, since the electron dis-
persion becomes isotropic in p̃ space as seen in Eq. �13�, the
Fermi-surface anisotropy does not remove the infinite degen-
eracy of the optimum q̃m for s-wave pairing.

IV. MIXED STATE

In this section, we take into account both the orbital and
paramagnetic pair-breaking effects. After deriving the upper
critical-field equation, we consider the limit of a weak orbital
effect.

For a magnetic field H= �0,0 ,H�, we define A
= �−Hy ,0 ,0� with an appropriate gauge. The scale transfor-

mation described above gives Ãx=−H̃ỹ with H̃
= �m̃ /�mxmy�H. We define boson operators by

�̃ =
�̃H

�2
��̃x − i�̃y� ,

�̃† =
�̃H

�2
��̃x + i�̃y� �15�

with

�̃H =� c

2eH̃
= �mxmy

mz
2 �1/12

�H, �16�

where �H=�c /2eH=��0 /2H, which is on the order of the

BCS coherence length �0 when H�Hc2. The operator ṽF� ·�̃
that appears in Eq. �10�, can be rewritten as
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ṽF� · �̃ =
1

�2�̃H

ṽF sin �̃��ei�̃��̃ + e−i�̃��̃†� − i�ṽF cos �̃�
�

� z̃
,

�17�

where �̃� and �̃� denote the polar coordinates when z̃ axis is
the polar axis.

Because Eq. �10� can be regarded as an eigenequation
with an eigenvalue −log�T /Tc

�0�� and eigenfunction ���r�,
our problem is reduced to find the eigenfunctions with the
highest eigenvalue. The solutions can be written in the form

��r� = �̄�x̃, ỹ�exp�iq̃zz̃/�� �18�

with � /�z̃ in Eq. �17� replaced by iq̃z /�. The gap Eq. �10� can
be rewritten as

− log� T

Tc
�0����x̃, ỹ�

= T

0

�

dt
1

sinh�Tt�
 d�p̃�

4
����p̂���2

� �1 − cos�t�h −
1

2
ṽFq̃z cos �̃� − �̂�����x̃, ỹ� , �19�

where we have defined

�̂ =
ṽF sin �̃�

2�2�̃H

�ei�̃��̃ + e−i�̃��̃†� . �20�

It is convenient to expand the function ��x̃ , ỹ� in terms of
Abrikosov functions �n

�k��x̃ , ỹ� defined by

�n
�k��x̃, ỹ� =

1

�n!
��̃†�n�0

�k��x̃, ỹ� , �21�

where n=0,1 ,2 ,3 ,¯ are the Landau-level indexes, k is an
arbitrary wave number, and �0

�k� is the solution of

�̃�0
�k��x̃, ỹ� = 0, �22�

which is expressed as

�0
�k��x̃, ỹ� = Ceikx̃ exp�−

�ỹ − ỹk�2

2�̃H
2 � �23�

with ỹk�k�̃H
2 and a normalization constant C. The function

�n
�k��x̃ , ỹ� is expressed as

�n
�k��x̃, ỹ� = �− 1�nCeikx̃Hn��2

ỹ − ỹk

�̃H
�exp�−

�ỹ − ỹk�2

2�̃H
2 �

�24�

in terms of the Hermite polynomial. The operators �̃ and �̃†

and the Abrikosov functions �n
�k� satisfy the relations

�̃†�n
�k��x̃, ỹ� = �n + 1�n+1

�k� �x̃, ỹ� ,

�̃�n
�k��x̃, ỹ� = �n�n−1

�k� �x̃, ỹ� . �25�

If we expand the eigenfunctions as

��r� = 	
n=0

�

�n�n
�k��x̃, ỹ�exp�iq̃zz̃/�� , �26�

the gap Eq. �10� can be written as a matrix equation for the
eigenvector with the vector elements �0 ,�1 ,�2 ,¯ as

− log� T

Tc
�0���n = 	

n�

Dnn��n� �27�

with

Dnn� = T

0

�

dt
1

sinh�Tt�
 d�p̃�

4
����p̂���2
 dx̃dỹ�n

�k��x̃, ỹ�

��1 − cos�t�h −
1

2
ṽFq̃z cos �̃� − �̂����n�

�k��x̃, ỹ� . �28�

When h=0, for s-wave pairing, the solution with n=0 and
qz=0 gives the highest upper critical field. In general, Abri-
kosov functions with different n’s can be mixed.

The magnetic field H appears in the Hamiltonians H0
and Hm. The field H that originates from A in H0 is respon-
sible for the orbital effect, and appears in the gap equation as
a dimensionless parameter amH with the coefficient am
defined by

am �
m̃

�mxmy

2e
c
� vF

2Tc
�0��2

. �29�

In contrast, the field H included in the Zeeman field h in Hm
is responsible for the Pauli paramagnetic pair-breaking ef-
fect. For this field, it is convenient to define the dimension-
less parameter �eH / �2Tc

�0��. The relative strength of the
Pauli paramagnetic pair-breaking effect to that of the orbital
effect is expressed by the ratio of their dimensionless
parameters,

zm =
�eH/�2Tc

�0��
amH

=
�e

2Tc
�0�am

. �30�

The parameter zm is proportional to the Maki parameter �.
For example, for s-wave pairing, numerical calculations give
amHc20�1.0372 and �eHP /�0�0.707107, and hence �
�7.39�zm.

If we define ām and z̄m for the isotropic system by

ām � �2e/c��vF/2Tc
�0��2,

z̄m = �e/�2Tc
�0�ām� , �31�

we obtain

zm = �mxmy

mz
2 �1/6

z̄m, � = �mxmy

mz
2 �1/6

�̄ �32�

with the Maki parameter of the isotropic system �̄

��2H̃c20 /HP. For the magnetic field parallel to the z axis,
when mx�mz we obtain zm� z̄m, i.e., ���̄, which means
that the system is strongly Pauli paramagnetic limited.
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V. TRANSITION FROM PURE FFLO STATE
TO MIXED STATE

Now, we consider a quasi-two-dimensional system such

that mx�my ,mz. In this case, because we have �̃H��H��0

from Eq. �16�, we may omit �̂��ei�̃��̃+e−i�̃��̃†� / �̃H in Eq.
�28� for finite n and n�. Therefore, if we can truncate the
summation over n in Eq. �26�, the upper critical-field equa-
tion is reduced to

− log� T

Tc
�0�� = T


0

�

dt
1

sinh�Tt�
 d�p̃�

4
����p̂���2

��1 − cos�t�h −
1

2
ṽFq̃z cos �̃���� �33�

in the limit �̃H→�, which coincides with the upper critical-
field equation for the pure FFLO state expressed by Eq. �12�
with q̃��0,0 , q̃z�. The magnitude q̃= q̃z should be opti-
mized so that the upper critical field is maximized. We write
the optimum value as q0. For example, for s-wave pairing, it
is known that q0�1.2�2h / ṽF at T=0. Thus, we have only
two states with the highest upper critical field, which have
the FFLO vectors q̃= �0,0 , �q0�. This contradicts the fact
that there are more than two eiq̃m·r̃/� in exactly two-
dimensional systems as mentioned below Eq. �12�. Further-
more, below the upper critical field, the free energy is mini-
mized by the state expressed by a linear combination of more
than two eiq̃m·r̃/� at low temperatures.14–16

This contradiction is due to the assumption that infinitely
large n’s are negligible in the two-dimensional limit. In the
limit mx�my ,mz, we need to consider Abrikosov functions
with infinitely large Landau-level indexes n. For large n’s,
the states with n�1 can be approximated by the state with n,
which means that �n�1�e�i�0�n in Eq. �25�, where e�i�0

are arbitrary phase factors. Therefore, we may write

�̃ = �ne−i�0, �̃† = �nei�0 �34�

in the gap equation. This procedure is analogous to those in
the theory of Bose condensation and in two-dimensional
type-II superconductors in a tilted magnetic field.12 Using
Eq. �34� we obtain

�̂ =
�nṽF sin �̃�

�2�̃H

cos��̃� − �0� . �35�

Thus, the gap equation �19� can be rewritten for mx
�my ,mz as

− log� T

Tc
�0����x̃, ỹ� = T


0

�

dt
1

sinh�Tt�
 d�p̃�

4
����p̂���2

� �1 − cos�t�h −
1

2
ṽF� · q̃�����x̃, ỹ� ,

�36�

where

q̃ = �q̃x, q̃y, q̃z� = �q̃�cos �0, q̃�sin �0, q̃z� �37�

with

q̃� = �q̃x
2 + q̃y

2 =
�2n

�̃H

=�2n�̄

�

1

�H
. �38�

If we write the optimum n for each fixed � as n���, we
obtain

q̃� = lim
�→�

�2n����̄
��H

2 . �39�

If q̃��0 in the limit �→�, n��� must diverge like �, i.e.,
n�����. Equation �36� coincides with the upper critical-
field equation of the pure FFLO state with q̃.

Equation �39� is an essential equation that connects the
pure FFLO state with the optimum q in the two-dimensional
limit and the mixed state with the optimum n and q̃z in quasi-
two-dimensions. From Eqs. �38� and �39�, we can see that if
there are more than two optimum q̃’s in the two-dimensional
limit, there must be mixed states with different n’s with close
upper critical fields in quasi-two-dimensions where mx
�my ,mz.

For example, a d-wave superconductor with

�dy2−z2�p̂� � p̂y
2 − p̂z

2 �40�

at low temperatures exhibits a degeneracy in the solutions of
Eq. �36� with q̃= �0, �q0 ,0� and �0,0 , �q0� in the limit
mx→�. From Eqs. �37� and �39�, we find that when mx

�my ,mz, the mixed states ��r���n�n
�k��x̃ , ỹ�eiq̃·r̃/� with

�n , q̃z���q0
2�̃H

2 /2,0� and those with �n , q̃z�= �0, �q0� have
upper critical fields close to each other.

VI. s-WAVE PAIRING

In this section, we consider an s-wave superconductor as
an example. Since �s�p�=1, the gap Eq. �10� is identical to
that of the isotropic model except that the vector potential A
is scaled as Eq. �7� and the eigenfunctions are distorted. Be-
cause the Zeeman field h is not scaled, in contrast to the
vector potential A, the Maki parameter � changes from �̄ as
expressed in Eq. �32�.

We expand the gap Eq. �19� with respect to the operators
�̃ and obtain the eigenfunctions,

��r� = �n�n
�k��x̃, ỹ�exp�iq̃zz̃/�� , �41�

which are indexed by n and q̃z. The upper critical-field equa-
tion is decoupled into those for each eigenfunction as

− log� T

Tc
�0�� = T


0

�

dt
1

sinh�Tt�
0

/2

sin �d�

� �1 − cos�ht�cos�1

2
q̃zṽFt cos ��

�exp�−
ṽF

2

16�̃H
2

t2 sin2 ��	
m=0

n

�− 1�m

�� 1

8�̃H
2

ṽF
2 t2 cos2 ��m n!

�m!�2�n − m�!� .

�42�
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The physical upper critical field Hc2�T� is the highest solu-
tion of H among the solutions of Eq. �42� at each fixed T. In
other words, the parameters n and q̃z are optimized so that
Hc2 is maximized.

In systems with A=0, the pure FFLO state occurs as de-
scribed in Sec. III at low temperatures. When the system is
isotropic, there is infinite degeneracy with respect to the di-
rection of q. We express the q’s that give the maximum
FFLO critical field as q= �q0 sin � cos � ,q0 sin � sin
� ,q0 cos �� with an optimum value of q0 and arbitrary � and
�.

In an anisotropic system with mx�my ,mz, the effective
Maki parameter becomes large so that ���̄ from Eq. �32�
and �̃H��H from Eq. �16�. When mx is very large, we can
make the approximation, q�q0. Therefore, from Eqs. �37�
and �38�, we obtain the optimum value of q̃z as

q̃z = ��q0
2 −

2n

�̃H
2

= ��q0
2 −

2n�̄

��H
2 �43�

for a given n. If we consider that n is always finite for the
limit �→�, Eq. �43� is reduced to q̃z= �q0 and the Hc2 Eq.
�42� is reduced to that of n=0. Therefore, when mx is very
large, states with any finite n have upper critical fields very
close to that of the state with n=0 and q̃z= �q0. However,
because the index n needs to be optimized for each situation,
it can be infinitely large. For the state with infinitely large n,

such that n����̃H
2 , Eq. �43� results in q̃z�q0 and q̃��0.

This can be also verified by numerical calculations. Fig-
ure 1 shows the temperature dependences of the critical
fields of states of various n. At each temperature, the state
with the highest critical field is physical. It is found that
vortex states with n=0,1 ,2 occur depending on the tempera-
ture, and that the envelope is very close to the curve of the

two-dimensional limit. It is also found that the wave vector q
becomes nonzero below T�0.51�Tc

�0�.
Figure 2 shows the behavior of the critical field for each n

at low temperatures. We obtain qz�0 below the temperature
at which the solid and dotted curves branch off. Interestingly,
below T�0.18�Tc

�0�, the upper critical field of the mixed
state with n=2 and q̃z�0 exceeds that in the limit zm→�.
We will discuss this later.

Figure 3 shows the zm ���� dependences of the upper
critical fields Hc2 for n=0,1 , ¯ ,8. It is found that the upper
critical fields of all the mixed states with n�0 tend to ap-
proach that of the mixed state with n=0, and slightly exceed
it, where zm is large. At each zm, the highest upper critical
field among those with n=0,1 ,2 ,¯ is the physical upper
critical field. It is found that n of the physical state increases
as zm and the physical critical field is larger than the critical
field of the n=0 state for zm�1.3.

Figure 4 shows the behavior of Hc2 for large zm. After
reaching maxima, all the critical fields for n�0 decrease and
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FIG. 1. Temperature dependences of the upper critical fields for
zm=3. The solid curves show the upper critical fields for n
=0,1 ,2 ,3 ,4 ,5. At each temperature, the state that gives the highest
critical field is realized as a physical state and the other states are
suppressed. The broken and dotted curves show the upper critical
fields in the two-dimensional limit and that with the assumption of
q=0, respectively.
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FIG. 2. Temperature dependences of the upper critical fields for
zm=3 at low temperature. The solid curves show the upper critical
fields for n=0,1 ,2 ,3. The dotted curves show the field when q
=0 is assumed. The thin broken and dotted curves show the upper
critical field in the two-dimensional limit and that with the assump-
tion of q=0, respectively.
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FIG. 3. zm dependences of the upper critical fields for n
=0,1 ,2 , ¯ ,8 at T /Tc=0.01. The dotted curves show those ob-
tained when q=0 is assumed. ��7.39�zm.
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converge to the curve for n=0 in the limit zm→�. Within the
present theory, the physical upper critical field �i.e., the high-
est field at each zm� decreases as zm increases for very large
zm�7.7 �i.e., 1 /zm�0.13�. This result seems inconsistent
with the naive expectation that reducing the orbital effect
�for example, by increasing vF� should reduce the pair-
breaking effect. Presumably, for such a large zm, a first-order
phase transition to a mixed state must occur at a critical field
higher than that obtained here, and the resultant critical field
must increase monotonically with zm.

VII. SUMMARY AND DISCUSSION

We have examined quasi-two-dimensional type-II super-
conductors and the two-dimensional limit. When H � �0,0 ,1�,
the effective Maki parameter � is proportional to
�mxmy /mz

2�1/6. Therefore, when mx�mz, the orbital pair-

breaking effect becomes weak and the superconductivity sur-
vives up to a higher field, where the FFLO state is favored.

In the mixed state, FFLO modulation occurs in the direc-
tion of the magnetic field and is smoothly reduced to that of
the pure FFLO state in the two-dimensional limit �mx /mz

→0� when the directions of the magnetic field and q of the
pure FFLO state coincide. In contrast, when their directions
differ, it may appear that the mixed state is not reduced to the
pure FFLO state continuously. However, in actuality, modu-
lation perpendicular to the magnetic field is realized in large
n vortex states. The physical origin of the order-parameter
modulation in vortex states with higher Landau levels is the
spin-polarization energy as in the pure FFLO state. The
mixed states with optimum n have upper critical fields close
to that of the pure FFLO state. Hence, a cascade transition
occurs when � is large, which is analogous to the exactly
two-dimensional system in a tilted magnetic field.10–12,27–30

In the two-dimensional limit mx→�, the Landau-level index
n increases as n���mx

1/6. As a result, the mixed state in-
dexed by �n ,q�� �or the pure vortex state indexed by n when
q� =0� is continuously reduced to the pure FFLO state with
q= �q� ,q��.

The relations �37� and �39� connect the mixed states of
Eq. �41� and the pure FFLO state in the two-dimensional
limit. The pure FFLO state with q��0 corresponds to the
mixed state with n��→�, and the upper critical fields of
the mixed states converges to that of the pure FFLO state.
This behavior has also been confirmed by numerical calcu-
lations.

From these results, we can conclude that the FFLO state
obtained in a theoretical model without orbital effects may
emerge as the vortex states with higher Landau-level indexes
in real materials where orbital effects are inevitable. In par-
ticular, the order-parameter modulation due to the higher
Landau-level index indicates FFLO modulation perpendicu-
lar to the magnetic field. We have demonstrated the behavior
in quasi-two-dimensional system by taking the two-
dimensional limit.
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